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A structurally inhomogeneous material makes conditions for development of a number of 
mechanical effects which cannot be studied within the framework of classical phenomenological 
theories; one of them is the effect of a boundary layer. It consists of the fact that close 
to the boundary of a body with structural inhomogeneity there is a boundary layer in which 
the stress-strained state differs from that in the internal regions. At the boundary of 
the body, stress concentrations arise which may reach considerable values. The effect of 
a boundary layer for elastic bodies has been studied in [I-6]. In creep theory there is 
a well-known solution of stochastic problems for internal regions quite distant from the 
boundary of the body [7-10], but the effect of stochastic inhomogeneities close to the sur- 
face at which boundary conditions are prescribed has not previously been studied. 

In this work a boundary problem is considered for the stressed state of a randomly in- 
homogeneous half-plane under creep conditions. It has been established that there is a narrow 
boundary layer in which stress fluctuations may be much greater than in the depth of the 
half-plane. An example is provided for estimating the reliability of a stochastically in- 
homogeneous plate according to the failure criterion as a result of stress outbursts~ 

I. Let a load be applied to the boundary of a stochastically inhomogeneous half-plane 
x 2 ~ 0 which is under conditions of a plane stressed state, 

( i . i )  

and stress oii satisfies the condition for macroscopic homogeneity <Oil > = o~i = const which 
corresponds to application of stresses o~i constant along x 2 with x i = • where h is quite 
large. 

The nonlinear boundary problem of creep is solved with an equation of state of the flow 
theory type in stochastic form [7] 

c~i,j : O, AuAhz~ih,i ~ : O, 

~U = c s n ( o i i -  ( t /3)6U~ q- czU(xl~ x2)] 

(1.2) 

with boundary conditions (i.i) (all of the indices take values of 1 and 2). Here Eij are 
strain tensor components; Ajk is elementary antisymmetrical pseudotensor; s is stress in- 
tensity; c and n are material constants; U(xi, x2) is a random function describing material 
mechanical property fluctuation (<U> = 0, <U2> = I); ~ is a number playing the role of a 
mechanical property variation coefficient; 6ij is Kronecker symbol. For repeated indices 
summation from 1 to 2 is carried out. 

Stress tensor ~ij taking account of (i.i) may be presented in the form of a sum of two 
terms 

~j = Wj + ~j, <m~> = %, <m~> = 0 ( i .3) 

(o~j is stress fluctuation). 

In [7] the nonlinear creep problem (i.i), (1.2) was linearized relative to fluctuations 
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O.LL.~ ---- 0,. ( i  . 4 )  

* * ( - t  + kips) + a~11(- -1  + L~Pl) + ~ii,~ (2 + kiP1) + %2,22 

4- o~,11 (2 A- k2p~) - -  6a12,12 = - - ~  (U,~p  I 4- U,11P2)~, 
ki np i / (2s~  2o01 o 2cro oo. 

02 02 _ 0  _ 0  
$02 _____ 0-11 _~. 0 2 2  ~ 0 1 1 0 2 2  . 

Boundary conditions for system (1.4) taking account of (i.I) and (1.3) have the form 

4~ I=~=o = o, 4~ I~=o-- o. (1.5) 

Let homogeneous function U(x~, x~), describing the material stochastic properties, be 
almost periodic and oscillate rapidly [i]: 

u =  ~ ~'~)cos[~(~i'% + ~(:%) + ~(")], 

where ~ is a large parameter having a dimension~ inverse to length; ~! k) are dimensionless 
values of the order of unity; A(k) and ~() are random values exhibiting properties: ~(h) 
has uniform distribution in the range (0; 2~), <A(k) > = 0, <A(k)A(s = 0 (k ~ s (T(~) 
~(0) = 0 (k ~ s <A (k) ~(0> = 0. If in addition it is assumed that all A (k) are distributed 
the same with finite dispersion, then according to the central limiting theorem, random func- 
tion U may be assumed to be distributed by a normal rule. 

For the convenience of computation it is desirable to change over to complex functions 
oo 

U = E B(a)exp [go~ (~i~)xl 4- ~(~a)x~)] (B (a) = A (~) exp (~(p(a))). ( 1 . 6 )  
h=l 

Solution of system (1.4) is presented as 

t (k) w(k)~ (i. 7) ~ kviJ 4- OJ" 
h=l 

v(k) is partial solution of system (1.4) obtained with substitution of function U by Here lj 

the k-th 
/--x 

term of expansion (1.6); w~) is solution of a homogeneous system corresponding 

- ~k) = -v(k) w (k)= -v (k) for x2 = 0. In the future where to (1.4) satisfying the conditions w22 22 ' 12 12 
this does not lead to misunderstandings the upper index k will be discarded. Functions Vks 
may be found in the form 

vhz ---- ]hz exp [ico(~lxl -]- ~x2)],  /hl ---- coast.  ( 1 . 8 )  

After substituting (1.8) in (1.4) in order to find fk~ a set of algebraic equations 
is obtained from which it follows that 

A,  = 2~so~ B ( ~  - a ~ )  (px~ + p#D ( 1 . 9 )  
I, PlP2 P~ 1) 

(~. = ~ + g ) .  

~ o  

Series E v~ ) 
h=l 

taking account of the boundary effect. Functions wij have the character of a boundary layer: 
they fade rapidly with distance from the boundary of the half-plane. We write them in the 
form 

~Y~7 := gij(X.2) exp (ioJ~,xO, ( 1 . 1 0 )  

where  f u n c t i o n  g i j ( x 2 )  s a t i s f i e s  a s e t  o f  n o r m a l  d i f f e r e n t i a l  e q u a t i o n s  

~ , g ,  + gi~,~ = 0, ~ g , ~  + g~,~ = 0, ( i . l i )  
g11,22 (2 + kip1) + g22,22 (--  I 4- k,p2) - -  o ) ~ g l 1  ( - -  l + k2p,)  - o)2~21922 (2 4- k2p2) - -  6io~1gx2,9_ = 0 

w i t h  b o u n d a r y  c o n d i t i o n s  

g ~  l,~=o = - -  I '~,  g ~  lx~=o = - -  11~- ( 1 . 1 2 )  

Set (I.ii) was obtained by substituting (i. I0) in the homogeneous set corresponding to (1.4). 

Solution of set (i.ii) with o~i ~ o02 is written as 

gives a solution at a distance from the boudnary of the half-plane without 
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4 
gii = ~-~ CsX~i exp (r,,n~). 

H e r e  C s a r e  a r b i t r a r y  c o n s t a n t s ;  XSj  a r e  c o o r d i n a t e s  o f  t h e  e i g e n v e c t o r  c o r r e s p o n d i n g  t o  

r o o t  r s o f  a c h a r a c t e r i s t i c  e q u a t i o n ,  w h i c h  may  l e a d  t o  a b i q u a d r a t i c  e q u a t i o n  

(2 + k~pa)r * - -  2co~ ~ (2 + kap~) r"- + co'~ (2 + l%p~)= 0. ( 1 . 1 3 )  

Of the four roots of (1.13) two of them have positive real parts. Since with x 2 ~ ~ the 
boundary effect should fade, all constants relating to these roots equal zero. In order 
to define the other two constants boundary conditions (1.12) are used. 

2. Let in particular o~ = o~2 = o ~ Then roots of characteristic equation (1.13) 
will be r~ = r 2 = - coS~, r 3 = r~ = ~$~. Solution of set (i. Ii), which is infinitely small 
with xa + ~, found by the method of indeterminate coefficients, has the form 

g,~ = (--~C~ + ~C~ - -  ~C, co~x2) exp (-co~lXo), (2.1) 
g:~ ~ (C~ -~- C~co~,x2) exp  (--co~,xe) ,  

g~ = (iC~ -~ iC~ + iC,,co~x.O exp (--co~Xo). 

By using boundary conditions (1.12) and expression (1.9) we find the integration con- 
stants : 

C1= __2~o0 B~, ~______t_~ = --i~) (2.2) (4 + ,) ~ ,  C~ 2~o ~ R (~t~(4 + ~) ~ 

By substituting (1.8)-(I.i0), (2.1), (2.2) in (1.7), solution of boundary problem (1.4), 
(1.5) is presented in the form 

. 2aa ~ ~ .  B(k) exP(i(~ 
o,1 = ( 4 ~  - -  ~(~)~ - ~i '~ ~xp ( ~ i ~ ) x ~ )  + 

,~o(h)o(h). o(h)2 (~lh) + [~(")~ + ~ p~ , - cop1 x~ + ~i~)i)] e~p ( - -  co~?)x~)}, 

, 2uo ~ ' ~  B (k) exp (i(o~i'*)x ,) ~a)~ 
o22 = ~ Z~ ~(k)2 X 

•  oxp ( ~.,~") x~) + [ l + cox~ (V?) + VT0]  ~ p  ( -  ~ ? ) ~ ) } ,  

o n  (4 -}- n) Z~ ~(k)2 X 

The dispersion of random stress field Dij = <[o~j[2> is calculated with the condition 

that all values of ~! k) equal unity. Random field U, prescribed by expansion (1.6); maybe 
assumed to be. approximately isotropic [I]. Taking account of the conditions imposed on 
values of A (k), f/h), and <U2> = i, the dispersion of the random stress field is expressed 
as follows : 

- -  - -  9 ~ 2 _ _  2a'o" {(5 6cox 2 + _co"x2)exp( - -2cox2)  ( 2 . 3 )  D l l ( x ~ )  (4+~)~  

- -  2 [(t  - -  cox,) cos cox o -}- (2 - -  cox,) s in  ox~] exp  ( - -  cox,,) -}- ~}, 

.~ooo. {(2co'-~ + 2cox~ + ~ ) e x p ( - 2 c o x ~ ) -  D ~  (x~) -- (4 + n) ~ 

- -  2 [(1 + cox,) cos coX o + cox~ s m  cox2] exp ( - -  cox,~) + t}, 

2~2002 
D~ (x~) (~ + ,~)~ {(2co~-/~-- 2cox~ + ~) e~p (-- 2cox~) -- 

- -  2 [(i  - -  cox,) cos coz~ + cox., s i n  cox~] exp ( - -  cox,) + t}. 

3. The results obtained make it possible to analyze the main features of the effect 
of a boundary layer during creep. 

At the boundary of half-plane x 2 = 0 the first equation of (2.3) gives 

Dn(0) = 8~2o~ + n) 2, (3. i) 

and with x 2 ~ ~, D11(~) = 2~2o~ + n) 2. Stress concentration, arising at the boundary 
of the half-plane x 2 = 0, is characterized by the square root of the ratio of these expres- 
sions: 
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p = /DII(0)/DII(m) = 2. For an elastic half-plane this value with Poisson's ration v = 0.25, 
calculated from results in [2], is somewhat less (p = 1.55). 

0 0 = Presented in Fig. i is the dependence of normalized dispersions of stresses Dij(Dij 

Dij(x2)/Dij(~)) on dimensionless coordinates mx 2. Normalized dispersions D~2, D~2 at the 
half-plane boundary equal zero, and D~ = 4. With an increase in x 2 , dispersions quite 
rapidly approach constant values coinciding with their values for unbounded material. With 
mx2 ~ 5 the relative error from substituting normalized dispersions by unity does not exceed 
5%. Therefore, it is possible to assume that the zone of the boundary effect has a width 
of the order of 5/m (m is frequency of microinhomogeneity fluctuation). 

Given in Table 1 in relation to variables ~ and n are values of coefficient of variation 
dll at the boundary of the half-plane x 2 = 0. Here d11 takes maximum values which exceed 
by a factor of two the corresponding values at infinity. Coefficients of variation d12 and 
d22 with fixed u and n take maximum values at the same points as for normalized dispersions 
D~2 and D~2, i.e., in the boundary layer. They are greater by factors of 1.05 and 1.2 than 
their asymptotic values respectively. 

It is well known that the power rule for creep (1.2) is a good description of material 
behavior only in a small area of change in stresses, and a better result is given by the 
hyperbolic sine rule. However, in a Comparatively small interval of change instresses the 
hyperbolic sine rule may be approximated by a power function, and then with small stresses 
n ~ 0, and with large stresses n = 5-7. Therefore, in the region of large stresses the value 
of d11 for metallic materials is found within the limits from 1.29(~ = 0.05) to 12.86% (~ = 
0.5), and with small stresses it changes from 3.53 (~ = 0.05) to 35.36% (~ = 0.5). Thus, 
inthe surface layer the coefficient of variation for stress fluctuation reaches consider- 
able values, which may be greater than for deep layers. 

Whence it is clear that stress fluctuations in the boundary layer play a considerable 
role in resolving the question of structural reliability according to the stress-rupture 
strength criterion and instantaneous local failures as a result of stress outbursts. Non- 
consideration of boundary effects may lead to an unfounded high estimate of the operating 
efficiency of structures under creep conditions. 

4. The solution obtained for the stochastic boundary problem of creep may be applied 
for approximate estimation of the reliability of a randomly homogeneous flat plate under 
conditions of biaxial uniform tension (a similar problem without taking account of boundary 
effects was considered in [II]). Random function U(xl, x2), describing the behavior of 
material rheological characteristics, is assumed to be normal. In this way stress tensor 
components will also be normal. 

As was demonstrated above, at the boundary of the plate x 2 = 0 the stress concentration 
factor according to mean square deviation considerably exceeds unity. Therefore, it is post 
sible to assume that the main contribution to the reduction in reliability is given by bound- 
ary effects [12]. The reliability function for a plate may be determined approximately as 
the probability of a random occurrence, consisting of the fact that at the boundary coin- 
ciding with line x 2 = 0 there will not be a single stress oll outburst beyond the permis- 
sible level o,: 

P(L)=P[ sup o ~ l ( x , ) < o , ]  (4.1) 
La~Xl<b 

(L = b - a is length of the plate boundary). 

By assuming that the plate is a highly reliable structure, the probability of failure- 
free operation (4.1) is expressed approximately in terms of the average number of outbursts 
from a region of permissible values [12] 

P (L),~ exp [-- l (~,)L].  ( 4 . 2 )  

The average number of outbursts X(o,) arriving at a unit of length is found for normal func- 
tion o~i by an equation [12] 

;~ (%) ---- 2a V'Dn (0) exp _ 2z)n (o)i. 
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TABLE 1 

(111 = V D l t  ( 0 ) / 0  ~ 100% 

{X 
lZ 

0 t 2 3 4 5 6 7 

0,05 
0,1 
0,2 
0,3 
0,4 
0,5 

3,53 
7,07 

14,14 
21,21 
28,28 
35,36 

2,83 
5,(~6 

1t,31 
t6,87 
22,63 
28,28 

2,36 
4,71 
9,43 

t4,t4 
t8,86 
23,57 

9 0 ' )  

8,08 
t2,t2 
t6,t6 
20,20 

1,77 
3,53 
7,07 

10,61 
t4,t4 
17,68 

1,57 
3,14 
(i,2.q 
9,43 

t2,57 
t5,71 

i ,41 
2,83 
5,66 
8,48 

tl,3t 
14,14 

1,29 
2,57 
5,14 
7,71 

10,28 
12,86 

4 

i 
I 

0 2 4 wm2 6" 

Fig. i 
# 

Here D11(0)is dispersion of random function o'11 for[x~=0; /)11(0) is dispersion of 
derivative ol, I* with x 2 = 0. Dispersion D'll(0 ) is calculated by the equation 

d 2 
, o 1 (4.3) 

Dll  (0) aT ~ Kll  (%)Ix=o, T = x~ - -  X l ,  

.,. 
where the correlation function for stress o'~i with x 2 = 0 

* * 8052002 
Ka1:(r ) = <(711 (Xl)Oll (x I -~ T)> (4-~ n) 2 exp (i~) (4.4) 

(the line indicates complex conjugation). 

Taking account of Eqs. (3.1), (4.3), (4.4) in order to calculate the average number 
of outbursts l(o,) arriving at a unit length we obtain finally an expression 

<o [ +.)2 (4.5) % (~,) = ~-~ exp ~--j6~" j" 

Thus, Eqs. (4.2) and (4.5) make it possible according to a prescribed permissible 
determinate level of o, to estimate plate reliability approximately. 

i, 

2 

3 

4 

5 

6 

7 

LITERATURE CITED 

V. A. Lomakin, Statistical Problems of Solid Deformed Body Mechanics [in Russian], Nauka, 
Moscow (1970). 
V. A. Lomakin and V. I. Sheinin, "Stress concentration at the boundary of a randomly 
inhomogeneous elastic body," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2 (1974). 
V. N. Naumov, "Stressed state of a randomly-inhomogeneous elastic half-space," Izv. 
Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2 (1976). 
V. V. Podalkov and V. A. Romanov, "Stress concentration at the boundary of a micro- 
inhomogeneous half-space," Prikl. Mat. Mekh., 42, No. 3 (1978). 
V. V. Podalkov and V. A. Romanov, "Deformation of an elastic isotropic microinhomo- 
geneous half-space," Prikl. Mat. Mekh. 47, No. 3 (1983). 
N. V. Arkhipov, "Problem of deformation for a micro-inhomogeneous cylinder," Vestn. 
MGU, Ser. i, Mat. Mekh., No. 3 (1984). 
V. A. Kuznetsov and Yu. P. Samarin, "Plane problem of short-term creep for a material 
with random rheological properties," Proc. 10th All-Union Conf. on Shell and Plate 
Theory, Metsinereba, Tbilisi (1975). 

153 



8. V. A. Kuznetsov, "Creep of a stochastically inhomogeneous material under plane stressed 
state conditions," in: Mathematical Physics [in Russian], KPTI, Kuibyshev (1976). 

9. N. N. Popov and Yu. P. Samarin, "Spatial problem of steady-state creep for a stochasti- 
cally-inhomogeneous material," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1985). 

10. N. N. Popov, "Creep of a stochastically inhomogeneous material under triaxial stressed 
state conditions," in: Theoretical and Experimental Method for Studying Creep in 
Structure 9 [in Russian], KPTI, Kuibyshev (1984). 

ii. V. A. KuznetsoV, "Approximation methods for solving reliability problems for distributed 
mechanical systems under creep conditions," in: Theoretical and Experimental Method 
for Studying Creep in Structures [in Russian], KPTI, Kuibyshev (1984). 

12. V. V. Bolotin, Use of Probability Theory and Reliability Theory Methods in Designing 
Structures [in Russian], Stroiizdat, Moscow (1971). 

154 


